

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Zipped-up Chain-type Coordination Polymers: Unsymmetrical Amide-containing Ligands Inducing **b**-Sheet or Helical Structures

Kazuhiro Uemura,^[a] Yuki Kumamoto,^[b] and Susumu Kitagawa^[b,c,d]

^[a] Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Tokiwadai 2-16-1, Ube-shi, Yamaguchi 755-8611, Japan.

^[b] Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishigyo-ku, Kyoto 615-8510, Japan.

^[c] Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 69 Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.

^[d] ERATO Kitagawa Integrated Pore Project, Kyoto Research Park, Bldg#3, Shimogyo-ku, Kyoto, 600-8813, Japan

Figure S1. Schematic views of the anion environments in (a) $\{[Ag(4-pia)](PF_6)\}_n$ (**1 É PF**₆⁻), (b) $\{[Ag(4-pia)](ClO_4)\}_n$ (**1 É ClO**₄⁻), (c) $\{[Ag(4-pia)](BF_4)\}_n$ (**1 É BF**₄⁻) and (d)

 $\{[Ag(4-pia)](NO_3)\}_n$ (**1 É NO**₃⁻). Numbers exhibit the distances (Å) among atoms. Expressions for double bonds in ClO₄⁻ and NO₃⁻ anions are omitted.

Figure S2. Schematic views of the PF_6^- environments in (a) { $[Ag(4-pmna)](PF_6) \cdot MeOH$ }_n (4a É **PF_6^-·MeOH** and (b) { $[Ag(4-pmna)](PF_6) \cdot MeOH$ }_n (4b É **PF_6^-·MeOH**). Numbers exhibit the distances (Å) among atoms.

Figure S3. IR spectra of (a) $\{[Ag(4-pia)](PF_6)\}_n$ (1 É PF₆⁻), (b) $\{[Ag(4-pia)](ClO_4)\}_n$ (1 É ClO₄⁻), (c) $\{[Ag(4-pia)](BF_4)\}_n$ (1 É BF₄⁻) and (d) $\{[Ag(4-pia)](NO_3)\}_n$ (1 É NO₃⁻) at room temperature.

Figure S4. IR spectra of (a) $\{[Ag(4-pmia)](PF_6)\}_n$ (2 É PF₆⁻), (b) $\{[Ag(4-pmia)](ClO_4) \cdot H_2O\}_n$ (2 É ClO₄⁻·H₂O) and (c) $\{[Ag(4-pmia)](NO_3) \cdot H_2O\}_n$ (2 É NO₃⁻·H₂O) at room temperature.

Figure S5. IR spectra of (a) $\{[Ag(3-pmia)](PF_6)\}_n$ (3 É PF₆⁻), (b) $\{[Ag(3-pmia)](ClO_4)\}_n$ (3 É ClO₄⁻), (c) $\{[Ag(3-pmia)](BF_4)\}_n$ (3 É BF₄⁻), (d) $\{[Ag(3-pmia)](NO_3) \cdot H_2O\}_n$ (3 É NO₃⁻·H₂O)

and (e) { $[Ag(4-pmna)](PF_6) \cdot MeOH$ }_n (**4 É PF₆-MeOH**) at room temperature.

Figure S6. XRPD patterns of (a) as prepared $\{[Ag(4-pia)](PF_6)\}_n$ (1 É PF₆⁻), (b) simulation of 1 É PF₆⁻, (c) as prepared $\{[Ag(4-pia)](ClO_4)\}_n$ (1 É ClO_4^-), (d) simulation of 1 É ClO_4^- , (e) as prepared $\{[Ag(4-pia)](BF_4)\}_n$ (1 É BF₄⁻) and (f) simulation of 1 É BF₄⁻. Since it was not succeeded in obtaining the microcrystalline sample 1 É NO₃⁻, single crystals were used for some experiments. The simulation patterns were based on the single X-ray analyses.

Figure S7. XRPD patterns of (a) as prepared $\{[Ag(4-pmia)](PF_6)\}_n$ (2 É PF₆⁻), (b) simulation of 2 É PF₆⁻, (c) as prepared $\{[Ag(4-pmia)](ClO_4)\cdot H_2O\}_n$ (2 É ClO₄⁻·H₂O), (d) simulation of 2 É ClO₄⁻·H₂O, (e) as prepared $\{[Ag(4-pmia)](NO_3)\cdot H_2O\}_n$ (2 É NO₃⁻·H₂O) and (f) simulation of 2 É NO₃⁻·H₂O. The simulation patterns were based on the single X-ray analyses.

Figure S8. XRPD patterns of (a) as prepared $\{[Ag(3-pmia)](PF_6)\}_n$ (3 É PF₆⁻), (b) simulation of 3 É PF₆⁻, (c) as prepared $\{[Ag(3-pmia)](ClO_4)\}_n$ (3 É ClO_4^-), (d) simulation of 3 É ClO_4^- , (e) as prepared $\{[Ag(3-pmia)](BF_4)\}_n$ (3 É BF_4^-), (f) simulation of 3 É BF_4^- , (g) as prepared $\{[Ag(3-pmia)](NO_3) \cdot H_2O\}_n$ (3 É $NO_3^- \cdot H_2O$) and (h) simulation of 3 É $NO_3^- \cdot H_2O$. The simulation patterns were based on the single X-ray analyses.

Figure S9. The plots of *b* versus *a*. Open circles are corresponding to those in $\{[Ag(4-pmia)](PF_6)\}_n$ (**2 É PF**₆⁻). Other angles (filled circles) appear a tendency for a large value of *a* to be accompanied by a small value of *b*.

Figure S10. XRPD patterns (left) and IR spectra (right) at room temperature for anion exchange of compounds **2**. See the text for the detailed information.

Figure S11. XRPD patterns (left) and IR spectra (right) at room temperature for anion exchange of compounds **3**. See the text for the detailed information.